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Introduction and motivation

Our research project relates to the theory of knots and links and addresses
the phenomenon of hyperbolicity. The primary goal of our research is to
disprove the long-standing hyperbolicity conjecture for knots and links.
The hyperbolicity conjecture states that hyperbolic knots and links are
generic. More precisely, it states that the percentage of hyperbolic knots
(respectively, of hyperbolic links) amongst all of the prime knots (respec-
tively, all of the prime non-split links) of n or fewer crossings approaches
100 as n approaches infinity. This conjecture dates back to Thurston’s
famous classification theorem, of 1978, stating that the non-torus non-
satellite knot is hyperbolic. (This classification was an important step to-
wards Thurston’s geometrization conjecture, presented in 1982 and proved
by Grigori Perelman in 2003.) At first glance, Thurston’s classification
looks paradoxical and highly contra-intuitive. Indeed, our intuition says
that the subsets of torus, satellite, and hyperbolic knots and links are scarce
while the classification theorem says that these subsets form the whole set.
The hyperbolicity conjecture suggests that the solution to this paradox is
hidden in the concept of hyperbolicity. This suggestion was based on ex-
perimental data: it was discovered that hyperbolic objects, though look
scarce, are in fact ubiquitous in some cases. For example, it was shown
in [2] that the set of prime knots with at most 16 crossings consists of 1
trivial, 20 satellite, 12 torus, and 1 701 903 (almost two million!) hyper-
bolic knots. Guided by these striking results (and other results of this kind,
some of which we list below) many researchers recalibrate their intuition
accordingly, and during several last decades it was strongly believed by
most knot/link and 3-manifold theorists that the hyperbolicity conjecture is
true and finding its proof is just a matter of time.
However, recent research results reveal that the situation is more com-

plex. In particular, in a recent work [3] it is shown that the hyperbolic-
ity conjecture contradicts several other plausible conjectures, including the
120-year-old conjecture on additivity of the crossing number of knots un-
der connected sum and the conjecture that the crossing number of a satellite
knot is not less than that of its companion. In later work [1] we were able
to disprove the hyperbolic conjecture. We have a possible explanation why
this result does not contradict the previously obtained demonstrative results
on the apparent genericity of hyperbolic knots and links. The answer is that
there are no prime satellite knots and links with small crossing number but
this fact does not prevent satellites from being typical amongst knots and
links of large size. In other words, the statistics of knots is distinct for ones
of relatively small and “average” size and for ones of large and huge size.

Basic definitions

Definition 1. The crossing number of a knot K (denoted by crK) is the
smallest number of crossings of any diagram of the knot. A diagram of a
knot K with precisely crK crossings is called minimal.

Definition 2. A non-trivial knot is called prime if it cannot be written as the
connected sum of two non-trivial knots.

An illustration of a connected sum of two prime knots is presented on the
figure below.

Connected sum of knots

Definition 3. A non-trivial knot is called hyperbolic if its complement
(S3 \K) admits a complete hyperbolic metric of finite volume.

Definition 4. Let K̃ be a knot in a 3-sphere S̃3 and Ṽ an unknotted solid
torus in S̃3 with K̃ ⊂ Ṽ ⊂ S̃3. Assume that K̃ in not contained in a 3-ball
of Ṽ . A homeomorphism h : Ṽ → V̂ ⊂ Ŝ3 onto a tubular neighborhood V̂

of a non-trivial knot K̂ which maps a meridian of S̃3 \ Ṽ onto a longitude
of K̂ maps K̃ onto a knot K = h(K̃). The knot K is called a satellite of
K̂.

Main result

Theorem 1. The proportion of hyperbolic knots among all of the prime
knots of n or fewer crossings does not converge to 1 as n approaches in-
finity. Moreover, let Pn (resp., Hn, Sn) denote the number of prime (resp.,
hyperbolic, prime satellite) knots of n or fewer crossings. Then

lim inf
n→∞

Hn

Pn
< 1− 1

2 · 1017
.

Idea of the proof: We use the fact that the number of prime knot with
crossing number at most n grows at most exponential with n.

Let K be a hyperbolic knot with crK = n, let D be its minimal diagram,
and let α(D) be the diagram obtained from D by local move as in figure
below.

Double figure-eight move

It is easy to show that a knot α(K) represented by α(D) is a satellite knot.
The only things we need to check are:
1.α(K) is prime.
2. If K and K ′ are two distinct hyperbolic knots then α(K) ̸= α(K ′).
The first item follows from well-known theorems about JSJ-decomposition
of knots. The second item uses some technique related to the theory of tan-
gled and some funny geometric ideas. □

Forthcoming Research

In fact we think that a randomly chosen knot with a huge crossing num-
ber will almost surely be a satellite knot (with difficult satellite structure
related to many knots). We will formulate this as a conjecture.
Conjecture. The proportion of satellite knots among all of the prime knots
of n or fewer crossings converges to 1 as n approaches infinity.
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