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Details and numerous examples in [U]. Let X be a complex and
connected projective manifold of dimension n.

Let κ(X,L) := limm→+∞
Log(h0(X,mL)

Log(m)
∈ {−∞, 0, 1, ..., n}.

Thus:
• κ(X,L) = −∞ iff h0(X,mL) = 0, ∀m > 0.
This is the case if L < 0, or, more generally, if L = OX(−D) for

some effective divisor D. And also when X is an elliptic curve, with
c1(L) = 0, but L not torsion in Pic(X).
• κ(X,L) = 0 iff h0(X,mL) ≤ 1,∀m > 0, with equality for some

m > 0, for example if L is torsion in Pic(X).
• κ(X,L) = n iff mL = A + E, for some m > 0, A ample and E

effective.
• κ(X,L) = d ∈ {1, ...., n}. in the following simple, but typical,

example:
X = Y ×Z, dim(Z) = d, dim(Y ) = (n−d), L = p∗Z(M),M ∈ Pic(Z),

ample, pZ : X → Z the projection on the second facteur.

Proposition 1.1. If κ(X,L) = d ≥ 0, for some integer m > 0, the ra-
tional map Φm.L : X 99K P((H0(X,m.L)∗) associated to the linear sys-
tem |m.L| is a fibration (with connected fibres), its image Z = ΦmL(X)
has dimension d, is independent of m >> 0 suitably chosen (up to
birational equivalence), and its generic fibre Xz has κ(Xz, L|Xz) = 0.

In particular, if d = n, ΦmL(X) is birational to X.

Said otherwise: κ(X,L) := maxm>0{dim(Φm.L(X))}.

2. ‘Kodaira’ dimension

The main case is when L = KX := det(Ω1
X), the canonical line

bundle on X. One writes then: κ(X) := κ(X,KX)1.
We first start with the case of curves. Then κ(X) tells (almost)

everything on X, qualitatively.

2.1. Curves. The situation is indeed very simple: κ(X) ∈ {−∞, 0, 1}
describes X, its topology, fundamental group, and, as seen later, qual-
itatively, its hyperbolicity and arithmetic properties too.

κ g X π1(X)
−∞ g = 0 P1 {1}

0 g = 1 C/Λ Ãb

1 g ≥ 2 D/Γ Γ

• The main objective here will be to define the analogues of these 3
classes in higher dimensions, and to decompose an arbitrary higher di-
mensional X into its ‘components’ of the 3 types by a suitable sequence
of canonical and functorial fibrations.

1In fact introduced by Shafarevich et al.
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2.2. The Iitaka-Moishezon fibration. The invariant κ(X) enjoys
several properties:
• It is birational, and preserved by finite étale covers
•Additive for products. Indeed, ifX = Y×Z, one has: h0(X,mKX) =

h0(Y,mKY )× h0(Z,mKZ), ∀m, and so: κ(Y × Z) = κ(Y ) + κ(Z).
In particular: ∀Yn−1, one has: κ(P1 × Yn−1) = κ(Y ) + (−∞) = −∞.

Manifolds with κ = −∞ are thus not ‘indecomposable’, and should
be decomposed into a ‘part’ with κ ≥ 0 and a ‘part’ concentrating the
κ = −∞ property. The ‘rational quotient’ map (also called ‘MRC’
fibration) r : X → R will realise this decomposition (see 3.7).
• There are 3 fundamental cases:
1. κ(X) = −∞.
2. κ(X) = 0
3. κ(X) = n.
And (n− 1) ‘intermediate’ cases:
• 0 < κ(X) = d < n. In these cases, X is ‘decomposed’ as a ‘twisted

product’ of manifolds with κ = 0 by a manifold Z of lower dimension
d by the following fibration J . Indeed:

When κ(X) ≥ 0, the map J := ΦmKX
: X 99K Z := Φm.KX

(X), for
m > 0 suitably large and divisible is birationally well-defined, and may
be assumed to be regular (ie: holomorphic). Its generic fibres Xz are
then smooth with κ(Xz) = 0. This is the ‘Moishezon-Iitaka’ fibration.

We have κ(Xz) = 0 because κ(Xz, KX|Xz) = 0, and KX|Xz = KXz

(by the ‘Adjunction formula’).

When κ(X) = 0, Z is a point, J does not give any information on
X, but when κ(X) = n, Z = X and J embeds birationally X in the
projective space P((H0(X,m.L)∗).

Caution: In general, however, κ(Z) < d := dim(Z) = κ(X). The
fibration J thus does not decompose X in parts with κ(Xz) = 0 and
κ(Z) = dim(Z). Moreover, J is not defined when κ(X) = −∞.

The sought decomposition thus needs further constructions.

The resulting ‘classification’ table thus looks like this by now, with
Xd a smooth hypersurface of degree d > 0 in Pn+1; by adjunction:
KXd

= OX(n+ 2− d):

κ X π1(X) Xd

−∞ uniruled ? ? d ≤ (n+ 1)

0 KX birationally torsion ? Ãb? d = (n+ 2)
1 < κ < n J : X → Zκ, κ(Xz) = 0 ?

n ?? ?? d ≥ (n+ 3)

The symbol “?” (resp. “??”) means that a conjecture exists (resp.
that no general structure scheme is known or even possibly expected).
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• When n = 2 (and to a large extent when n = 3), much more is
known.

2.3. Surfaces (n = 2). The ‘Kodaira-Enriques-Shafarevich’ classifica-
tion, is displayed in the table below ( up to birational equivalence and
finite etale covers).

Here, q = h1(X,OX) = h0(X,Ω1
X) = 1

2
b1(X); K3-surfaces are de-

fined by: q = 0, KX
∼= OX . They form a single deformation family

containing the smooth quartics in P3.

κ q X(up to bir., étale ∼=) π1(X)

−∞ q ≥ 0 P1 × Cq π1(Cq)

0 0 K3 {1}
0 2 (C2/Λ) Λ

1 ≥ 0 Elliptic/curve B Zt o π1(B), t = 0, 2

2 ≥ 0 ?? ??

Remark 2.1. When κ(X) = 1, we replace X by a suitable finite étale
cover in order to eliminate the multiple fibres of the ellliptic fibration.

3. Uniruledness and rational connectedness

3.1. Uniruledness.

Definition 3.1. Xn is uniruled if some f : P1×Yn−1 99K Xn rational,
dominating, exists.

Using Chow(X), this also means that X is covered by rational curves
(ie: images of non-constant maps from P1 to X).

Remark 3.2. If X is uniruled, κ(X) = −∞. (True for V := P1×Yn−1,
and κ(V ) ≥ κ(X) since f : V 99K X is dominating).

The reverse implication is a central conjecture of algebraic geometry
(proved for n ≤ 3).

Conjecture 3.3. (‘uniruledness conjecture’) If κ(X) = −∞, X is
uniruled. (Equivalently: κ(X) ≥ 0 if X is not uniruled).

The following ‘approximate’ solution is however known (adding a
sufficiently ample A to m.KX).

Theorem 3.4. TFAE:
1. X is uniruled.
2. h0(X,m.KX + A) = 0 for m > m(A).

3.2. Rational connectedness.

Definition 3.5. Xn is said to be rationally connected (RC for short)
if, for any (x, y) ∈ X ×X generic, there is a rational curve containing
x and y.
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Example 3.6. 1. Pn is RC. More generally:
2. rational =⇒ unirational =⇒ RC.
3. RC surfaces are rational. RC threefolds may not be rational.
4. Fano manifolds (those with −KX ample) are RC. Thus:
5. Xd ⊂ Pn+1 with d ≤ n+ 1 are RC.
6. General X4 ⊂ P4 are expected not to be unirational.
6. RC manifolds are simply-connected.

Uniruled manifolds are canonically decomposed as follows:

Theorem 3.7. For any X, there exists a (unique) fibration r : X → R
such that:

1. It fibres are RC
2. R is not uniruled.
The map r is called the ‘rational quotient’ (or alternatively the MRC

fibration) of X.
Conjecture 3.3 implies that:
2+. κ(R) ≥ 0

The two extreme cases are: X is not uniruled (and R = X), and: X
is RC (and R is one point).

Theorem 3.8. TFAE (for A sufficiently ample on X):
1. X is RC.
2. h0(X,⊗m(Ω1

X)⊗ A) = 0, ∀m ≥ m(A)
3. For any dominating f : X 99K Z, Z is uniruled.
Conjecture 3.3 implies that this is also equivalent with:
3+. κ+(X) = −∞ (see Definition 3.9 below).

Definition 3.9. κ+(X) := max{κ(Z), f : X 99K Z dominating}.

The implications 1 =⇒ 2 =⇒ 3 are easy. Theorem 3.8 gives 3 =⇒ 1.

4. A failed decomposition attempt

Assume conjecture 3.3. For any Xn, we then have then two maps:
1. r : X → R := R1 with κ(R) ≥ 0. Thus:
2. J : R→ J(R) := X(1) is well-defined.
The map J ◦ r : X → X(1) is thus well-defined for any X. Moreover:
• X = X(1) if and only if X is of general type.
• Otherwise, n1 := dim(X(1)) < dim(X) = n := n0.
We can thus iterate the fibration J ◦ r, applying it successively to

X,X(1), ..., X(k) as long as n0 > n1 > ... > nk = nk+1

We have k ≤ n, since 0 ≤ nk ≤ n− k.

In other words: (J ◦ r)n : X → X(n) is a fibration such that:
1. X(n) is of general type (possibly a point)
2. The fibres of (J ◦ r)n are towers of fibrations with fibres having

either κ+ = −∞ or κ = 0.
Its fibres are in fact ‘very weakly special’ in the following sense:
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Definition 4.1. X is ‘very weakly special’ (vwS for short) if there is
no fibration f : X 99K Zp, p > 0 with Z of general type.

Proposition 4.2. Assume Conjecture 3.3. The fibres of cw :=
(j ◦ r)n : X → X(n) are very weakly special. Its base X(n) is of general
type. This is the unique map with these two properties.

We call the map cw the ‘weak core map’ of X.

The proof rests on the following 3 properties:
1. X is vwS if κ+(X) = −∞ (by definition)
2. X is vwS if κ(X) = 0 (uses Corollary 4.4)
3. If f : X → Z and X → Y are fibrations with Z of general type

and Xy vwS, then f factorizes through g (ie: ∃h : Y → Z such that
f = (h ◦ g)).

This last property implies the uniqueness of cw.

4.1. Inverting the decomposition. More importantly, the ‘weak
core map’ can be obtained directly, without using neither Conjecture
3.3, nor the fibrations r and j, but only the following Theorem 4.3 (see
Corollary 4.5).

Theorem 4.3. ([V]) Let f : X → Z be a fibration, with Z of general
type (ie: κ(Z) = dim(Z)). Then κ(X) = κ(Xz) + dim(Z).

Corollary 4.4. Let f : X → Z be a fibration with κ(X) = 0. Then
κ(Z) < dim(Z) if dim(Z) > 0.

Corollary 4.5. For any X, there is a unique fibration cw : X → Cw
such that: its fibres are vwS, and Cw is of general type.

We need Conjecture 3.3 in order to get the decomposition cw =
(j ◦ r)n.

4.2. Etale covers do not preserve the weak core map. This seem-
ingly satisfactory decomposition result is, however, not preserved by
finite étale maps. This is a major failure.

Definition 4.6. X is ‘weakly special’ (wS for short) if every finite étale
cover of X is very weakly special.

Example 4.7. We now give a very simple example of a surface which
is vwS, but not wS.

Let X0 = C × E, with C a hyperelliptic curve of genus g ≥ 2, and
hyperelliptic involution h : C → C, and quotient π : C → C/ < h >∼=
P1, where E is an elliptic curve equipped with translation τ of order 2.
Let the fixpoint free diagonal involution h × τ : X0 → X0 operate on
X0, and let X be the (étale) quotient p : X0 → X := X0/ < h× τ >.

Thus X is vwS, but not wS.
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4.3. Correcting the failed attempt. In order to correct the above
decomposition c = (j ◦ r)n, we shall introduce a stronger notion of
specialness:

Definition 4.8. X is ‘special’ if κ(X,L) < p,∀L ⊂ Ωp
X of rank 1, and

any p > 0.

Remark 4.9. If f : X → Zp, p > 0 is a fibration with Z of general
type, then Lf := f ∗(KZ) ⊂ Ωp

X is a rank 1 subsheaf with κ(X,Lf ) = p.
Thus Special implies very weakly special. We shall see (Corollary 8.2)
that Special implies weakly special as well (but the converse does not
hold in dimension 3 or more (see §.13)).

The important feature of this new definition is that even if the base
of f : X → Z is not of general type, the saturation Lf of f ∗(KZ)
in Ωp

X may have κ(X,Lf ) = p. This is precisely what happens in the
example 4.7 above. Moreover, κ(X,Lf ) = κ(Z,KZ + Df ), where the
pair (Z,Df ) is the ‘orbifold base’ of f , encoding the multiple fibres of f
(in Example 4.7, these are the 2g+2 points of P1 over which π ramifies
(to order 2)).

The decomposition we are aiming at will be achieved by using the
notion of specialness of 4.8 in two steps:
• A first fibration c : Xn → C (the ‘core map’) will separate the two

opposite ‘parts’ of X: its fibres (which are ‘special’), and its ‘orbifold
base’ (which is of general type). (see §. 8)
• The second step (still depending on conjecture Corb

n,m) decomposes
c = (j ◦ r)n as a sequence of canonical and functorial fibrations r and
j. The fibrations r (resp. j) are ‘orbifold analogues’ of the previous
ones, and have ‘orbifold’ fibres generalising rationally connected (resp.
κ = 0) manifolds respectively.(see §10)

5. Bogomolov sheaves

Theorem 5.1. ([Bog]) Let L ⊂ Ωp
X a rank 1 coherent subsheaf. Then:

1. κ(X,L) ≤ p.
2. If κ(X,L) = p, there exists a (unique) fibration f : X → Yp such

that L = f ∗(KY ) generically on X. We say that L is a ‘Bogomolov
sheaf ’ on X if, moreover, p > 0.

Thus X is ‘Special’ (as in definition 4.8) means that X does not
carry any ‘Bogomolov sheaf ’.

Remark 5.2. If L is a Bogomolov, sheaf, f ∗(KY ) ( L, et κ(Y ) < p,
in general. The difference comes from the ‘orbifold base’ defined below.

Example 5.3. Let X be as in 4.7 above. It is not special. Indeed: its
Iitaka fibration J : X → C/ < h >= P1 has smooth fibres isomorphic
to E, with 2(g + 2) double fibres isomorphic to E/ < τ > over the
ramification points aj, j = 1, . . . , 2g + 2 of π : C → P1. Define the
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‘orbifold base’ of J to be: (P1, DJ), with DJ :=
∑j=2g+2

j=1 (1 − 1
2
).{aj},

and its canonical bundle to be LJ := KP1 + DJ , so that π∗(LJ) = KC.
A local computation shows that J∗(LJ) ⊂ Ω1

X , and κ(X, J∗(LJ)) =
κ(P1, LJ) = 1. Thus J∗(LJ) is a Bogomolov sheaf (with p = 1), and X
is not special.

This local computation reduces to: du
u1/2

= 2.dx if u = x2.

6. Orbifold base of a fibration

6.1. Orbifold pairs, invariants. An ‘orbifold pair’ (X,D) consists
of a smooth connected complex projective manifold Xn, together with
D :=

∑
j∈J cj.Dj, a Q-divisor with irreducible componentsDj equipped

with rational coefficients cj ∈]0, 1].
We also write cj := (1− 1

mj
), with mj := (1− cj)−1 ∈ Q∩]1,+∞[∪+

∞, called ‘the multiplicity’ of Dj in D. For any irreducible divisor
F ⊂ X, we define mD(F ) = 1 if F is not a component of D, and
mD(F ) := mj if F = Dj, so that D =

∑
F⊂X(1− 1

mF (D)
).F , also.

We say that (X,D) is ‘smooth’ if Supp(D) := ∪Dj is SNC, and that
it is ‘integral’ if the m′js are all in Z ∪+∞.

• The canonical bundle of (X,D) is defined to be: KX + D, its
‘Kodaira’ dimension is κ(X,D) := κ(X,KX +D) ≥ κ(X).

6.2. Orbifold base of a fibration. Let f : X → Y be a fibration,
with Y smooth. For any irreducible divisor E ⊂ Y , let f ∗(E) :=∑

k∈K tk.Fk + R, the F ′ks being the components of f−1(E) mapped
surjectively onto E by f , while R is an f -exceptional divisor of X (ie:
f(R) ( E).

Define mf (E) := inf{tk, k ∈ K}. This is the multiplicity2 of the
generic fibre of f over E. One has: mf (E) = 1, for all but finitely
many E ′s. The sum Df :=

∑
E⊂Y (1− 1

mf (E)
).E is thus finite.

Definition 6.1. The ‘orbifold base’ of f is (Y,Df ). Its Kodaira di-
mension is thus: κ(Y,KY +Df ).

Remark 6.2. More generally, if X is itself equipped with an orbifold
divisor D, we shall, for f, Y, E, Fk, tk as above, define mf,D(E) :=
inf{tk.mD(Fk), k ∈ K}, and the orbifold base (Y,Df,D) of f : (X,D)→
Y to be (Y,Df,D), with: Df,D :=

∑
E⊂Y (1− 1

mf,D(E)
).E.

Example 6.3. Xy the generic fibre of a fibration f : X → Y , then:
1. Df = 0 if Xy is RC.
2.If Xy is an abelian variety, then Df = D∗f , the ‘classical’ orbifold

base of f (see footnote).

2Classically, one uses gcd{tk}, instead of the inf , which leads to the ‘classical’
orbifold base (Y,D∗

f ) of f . One reason to deviate from this choice is given in 6.5.
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6.3. Birational equivalence, neat models of fibrations. If f ′ :
X ′ → Y ′ is birationally equivalent to f , which is denoted f ′ ∼= f , then
κ(Y,Df ) 6= κ(Y ′, Df ′) in general.

The birational notion is κ(X, f) := minf ′∼=f{κ(Y ′, K ′Y +Df ′)}, which
permits to define κ(X, f) even when f is only a rational fibration.

However, κ(Y,Df ) = κ(X, f) whenever f : X → Y is ‘neat’ (ie:
obtained by suitable base change and flattening). We assume in the
sequel that all our maps are either neat or replaced by a neat birational
model. We then speak of the ‘neat orbifold base’ (Z,DZ = Df ) of a
rational fibration f

6.4. Orbifold base and saturation of differentials.

Theorem 6.4. For any fibration f : X → Yp, p > 0, if L is the
saturation f ∗(KY )sat of f ∗(KY ) in Ωp

X , then: κ(X,L) = κ(Y,KY +Df ).
In particular, L is a Bogomolov sheaf if and only if (Y,Df ) is of gen-

eral type. Conversely, if L is a Bogomolov sheaf, it is of the preceding
form f ∗(KY )sat for a unique f .

Remark 6.5. Theorem 6.4 says that: κ(X, f ∗(KY )sat)−κ(X, f ∗(KY )) =
κ(Y,Df )− κ(Y ). This equality does not hold in general with the ‘clas-
sical’ multiplicities.

6.5. Corb
n,m Conjecture.

Conjecture 6.6. (Corb
n,m) If f : (X,D)→ Zp is‘neat’, then:

κ(X,D) ≥ κ(Xz, Dz) + κ(Z,Df,D).
In particular: κ(X) ≥ κ(Xz) + κ(Z,Df ) ≥ κ(Xz) + κ(Z).

When D = 0 = DZ , this is Iitaka’s Cn,m conjecture.
A partial solution is given by the:

Theorem 6.7. If κ(Z,DZ) = p := dim(Z), one has:
κ(X,D) = κ(Xz, Dz) + κ(Z,DZ) = κ(Xz, Dz) + p
Thus: κ(X) = κ(Xz) + p if κ(Z) = p.

Theorem 6.7 generalizes Theorem 4.3 to the orbifold context.
This generalisation considerably extends the range of applications of

this former result, especially when κ(Xz) =∞, or κ(Z) = −∞.

Corollary 6.8. If κ(X,D) = 0, , one has: κ(Z,DZ) < p for every
f : (X,D)→ Zp, p > 0, rational dominant, with DZ := Df,D.

In particular, X is special if κ(X) = 0.

7. Special Manifolds

Recall:

Definition 7.1. Xn is ‘special (or: ‘of special type”) if there is no
Bogomolov sheaf on X. Equivalently, for any fibration f : X 99K Zp,
p > 0, its ‘neat’ orbifold base (Z,DZ) is not of general type.
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Example 7.2. 0. If X is special, it is ‘very weakly special’.
1. A curve X1 is special if and only if either rational or elliptic.
2. If f : X 99K Y is dominating, and if X is special, so is Y .
3. If X ′ → X is etale finite and if X est special, then X ′ too (proof

based on Theorem 6.7, surprisingly difficult).
4. If X is RC, it is special.
5. If κ(X) = 0, X is special (by Corollary 6.8).
Particular (and easier) cases: X is an abelian variety, c1(X) = 0.
6. For any k, n,−∞ ≤ k < n, there exist special Xn with κ(Xn) = k.
7. If f : Cn 99K Xn is meromorphic (possibly transcendental) and

non-degenerate, X is special (‘orbifold version of Kobayashi-Ochiai’).
8. A surface X2 is special if and only if κ(X) < 2 and π1(X) is

almost abelian.
Indeed: when κ = −∞, 0, this is clear from classification.
When κ = 1, after a suitable finite étale cover, the elliptic fibration

J : X → B has no multiple fibre3, and X is then special if and only
if so is B. And thus π1(X) is almost abelian if and only if g(B) ≤ 1,
because of the exact sequence of groups: Z⊕2 → π1(X) → π1(B) → 1
(if g(B) = 1, further arguments are required).

9. There is no such simple characterisation when n ≥ 3.

Conjecture 7.3. 1. If X is special, π1(X) is almost abelian.
2. Being special is stable by deformation and specialisation.
This is true if n = 2 by 7.2(8), but is unknown if n > 2.

8. The ‘core map’

Theorem 8.1. For any X, there exists a unique fibration c = cX :
X → C = CX such that:

1. Its ‘general’ fibres are special.
2. Its orbifold base (C,Dc) is of general type.
This (almost holomorphic) fibration is the ‘core map’ (of X).
This map is functorial: if f : X 99K Y is dominant, there is a unique

map cf : CX → CY such that cY ◦ f = cf ◦ cX .

The extreme cases are when X is of general type (and then X = C),
and when X is special (and then C is a point). In the intermediate
cases, c thus ‘splits’ X into its antithetic ‘parts’: special (the fibres)
and of general type (the orbifold base).

Idea of proof: If X is special, c is the map onto a point. Other-
wise, c is the fibration associated to a Bogomolov sheaf L ⊂ Ωp

X with
maximal p > 0. A suitable application of Theorem 6.7 and induction
on n = dim(X) show that its general fibres are special, and that this
L is unique �

3Except in the simple case where B = P1 and Df is supported on two points or
less.
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Corollary 8.2. If u : X ′ → X is finite étale, cu : C ′ → C is finite
(ramified, but étale in an orbifold sense).

In particular, X ′ is special if so is X.

Corollary 8.3. X is special if and only if any two of its generic points
can be joined by a chain of special subvarieties (ie: varieties with special
desingularisations).

Remark 8.4. 1. A singular variety need not be special if any two of
its points are joined by a chain of special subvarieties (cones over a
manifold of general type)

2. A special X may contain no strict special subvariety (simple
abelian varieties, possibly the ‘general’ smooth quintic threefold).

9. Conjectures in hyperbolicity and arithmetics

Conjecture 9.1. X is special if and only if :
(H) equivalently: there is a non-constant holomorphic curve h : C→

X with Zariski-dense image, or: ∀x, y ∈ X, there exists h : C → X
with image containing x and y.

(A) (assuming X defined over a number field k): there exists a num-
ber field k′ ⊃ k such that X(k′) is Zariski dense in X.4

These conjectures are motivated by the decomposition c = (j ◦ r)n
(see §10), which permits (to a large extent) to reduce them to their
orbifold versions about (X,D)′s which are either of general type, or
with κ = 0, or κ+ = −∞). We shall explain this in §. 11.

Using the core map c : X → C, and an orbifold version of Lang’s
conjectures, we get (see §. 11 for some details):

Conjecture 9.2. There is an algebraic subset W ( C such that:
(H’) Any non-constant holomorphic map h : C → X has image

contained in c−1(W ).
(A’) (assuming X defined over a number field k): for any number

field k′ ⊃ k, [c(X(k′)) ∩ (C −W )] is finite.

Recall that Lang’s conjectures asserts these when X is of general
type (so that c = idX , then).

10. The decomposition c = (J ◦ r)n of the ‘core map’

Let (X,D) be a smooth orbifold pair, let KX + D be its canonical
bundle. If f : (X,D) 99K Z is a fibration, we denote the orbifold base
of any of its ‘neat’ birational models by (Z,DZ := Df,D), as in Remark
6.2.

• If κ(X,KX + D) ≥ 0, the Moishezon-Iitaka fibration is defined
as when D = 0, using the linear system m.(KX + D) for m > 0

4This property is called ‘potential density’ by geometric arithmeticians.
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large and divisible. It gives surjective fibration J : (X,D) → Z with
dim(Z) = κ(X,KX + D) and κ(Xz, KXz + D|Xz) = 0 for its generic
orbifold fibre.
• The extension of the ‘rational quotient’ r to smooth orbifold pairs

(X,D) is not so immediate. We shall use the simplest version, directly
generalising the case D = 0.

Definition 10.1. κ+(X,D) = −∞ if κ(Z,DZ) = −∞ for any rational
(neat model of any) dominant fibration f : (X,D) 99K Zp, p > 0.

Remark 10.2. Conjecturally, the condition κ(X,D) = −∞ (resp.
κ+(X,D) = −∞) should be equivalent to the fact that (X,D) is unir-
uled (resp. rationally connected), the definitions being the same as when
D = 0, but replacing rational curves by D-rational curves defined in
11.3 below. Hence the terminology.

Proposition 10.3. Assume Corb
n,m. For any smooth (X,D), there is a

unique5 fibration r : (X,D)→ R (its ‘κ-rational quotient’), such that:
1. its general orbifold fibres (Xr, Dr) have κ+ = −∞.
2. its (neat) orbifold base (R,DR) has: κ(R,DR) ≥ 0.

We thus get, in complete analogy with the ‘very weakly special’ case:

Theorem 10.4. Assume Corb
n,m (used to define r).We then have, for

any smooth (X,D):
1. The composition (J ◦ r) : (X,D)→ (X1, D1) is well defined.
2. So is, for every k ≥ 0, its k-th iterate (J◦r)k : (X,D)→ (Xk, Dk).
3. The orbifold fibres of (J ◦ r)k are special, ∀k ≥ 0.
4. c = (J ◦ r)n, n := dim(X)

Corollary 10.5. X is special if and only if it is a tower of fibrations
with orbifold fibres having either κ+ = −∞, or κ = 0.

Remark 10.6. This permits to essentially ‘reduce’ conjectures (such
as 7.3) to the same conjectures, but for smooth orbifold pairs having
either κ+ = −∞, or κ = 0.

Example 10.7. In order to show that π1(X) is almost abelian if X
is special (the ‘Abelianity conjecture’), it is sufficient to show that
π1(X,D) is almost abelian when κ(X,D) = 0 and when κ+(X,D) =
−∞ for (X,D) smooth and integral. Here, π1(X,D) is the quotient of
π1(X −D) by the normal subgroup generated by the mth

j powers of all
the small loops γj around the D′js.

The Abelianity conjecture is established when π1(X) has a faithful
representation in some Gl(N,C).

5Up to birational equivalence.
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10.1. The decomposition c = (j ◦ r)2 for surfaces. We shall give
the first step at which the sequence: idX , r, j ◦ r, r ◦ j ◦ r, . . . stabilises
(which is c), and the corresponding decreasing sequence of dimensions
of the images, X being special if and only if the last term is 0.

1. κ(X) = −∞. Apply r : X → R. There are 3 cases:
1. 1. R is a point: c = r, {2, 0}
1.2. R is a curve and g(R) = 1: c = (j ◦ r), {2, 1, 0}
1.3. R is a curve and g(R) ≥ 2. c = r, {2, 1}
2. κ = 0. R = X, X1 is a point. c = (j ◦ r), {2, 2, 0}
3. κ(X) = 1. R = X, X1 = B is a curve. Let (B,DJ) be the orbifold

base of J : X → B.There are again 3 cases:
3.1. κ(B,DJ) = −∞. c = (r ◦ j ◦ r), {2, 2, 1, 0}
3.2. κ(B,DJ) = 0: c = (j ◦ r)2, {2, 2, 1, 1, 0}
3.3. κ(B,DJ) = 1: c = (j ◦ r), {2, 2, 1}.
4. κ(X) = 2: c = idX , {2}.

11. Orbifold morphisms and orbifold hyperbolicity.

Let C be a smooth connected complex analytic curve. The most
interesting cases are when C is either D, C, or P1. Although the notion
of orbifold morphism can be defined more generally in the category of
orbifolds, we shall define it only for holomorphic maps h : C → (X,D)
from C to a smooth orbifold pair (X,D =

∑
j(1−

1
mj

).Dj).

Definition 11.1. The holomorphic map h : C → (X,D) is an orbifold
morphism if h(C) ( D, and if, for any j: h∗(Dj) ≥ mj.h

−1(Dj).

This means that each time h(C) meets some Dj, the order of contact
has to be at least6 mj.

We have the following important functoriality of orbifold morphisms:

Example 11.2. Let f : (X,D)→ (Z,DZ) be a neat fibration onto its
orbifold base. For any holomorphic h : C → X, f ◦ h : C → (Z,DZ) is
an orbifold morphism (if f ◦ h(C) ( DZ).

There is a similar statement in arithmetic.

Definition 11.3. Let (X,D) be smooth. A D-rational curve (resp. a
D-entire curve) is an orbifold morphism h : C → (X,D) with C = P1

(resp. C = C).
We say that (X,D) is uniruled (resp. RC) if there exists a D-rational

curve through x (resp. (x, y)) for any generic x ∈ X (resp. (x, y) ∈
X ×X).

Extending conjectures which are (more or less) standard when D =
0, we get the following conjectures, which (essentially) imply and mo-
tivate the conjectures 9.1 and 9.2:

6The notion of ‘classical” orbifold morphism is that this order of contact be
divisble by mj .
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Conjecture 11.4. 1. If κ(X,D) = −∞ (resp. κ+(X,D) = −∞),
then (X,D) is uniruled (resp. rationally connected).

2. If If κ(X,D) = 0, then ∀x, y ∈ X, there exists a D-entire curve
containing x and y.

3. If (X,D) is of general type, there exists W ( X algebraic such
that any D-entire curve is contained in W .

These conjectures have arithmetic (and function field) analogues, ac-
cording to S. Lang. We give in the next section the simplest statement:
for X = P1, and k = Q.

12. Orbifold Mordell Conjecture

Let (P1, D), where D := (1 − 1
r
).{0} + (1 − 1

s
).{1} + (1 − 1

t
).{∞},

with r, s, t positive integers, and assume that (1
r

+ 1
s

+ 1
t
) < 1 (ie: that

(P1, D) is of general type).
For any non-zero integer 0 6= u ∈ Z, its ‘radical’ rad(u) is the prod-

uct of the prime numbers which divide u. And u is said to be ‘r-full’ if
rad(u)r divides u. This means that the exponent in the prime decom-
position of u of any prime p dividing u is at least r.

For u to be an exact r-th power7, these exponents have to be all
divisible by r. So r-th powers are r-full, but not conversely.

Definition 12.1. A rational number x = u
v

in lowest terms is D-
integral if (and only if) u is r-full, v is t-full, and u− v is s-full.

In other words, the integral points of (P1, D) are the solutions of the
equation u = v +w, with u, v, w respectively r, t, s-full. These integral
points thus generalise the integral solutions of the equation ar = bt+cs.

Conjecture 12.2. (‘Orbifold Mordell Conjecture’ for (P1, D), k = Q)
The number of D-integral points of (P1, D) above is finite.

Remark 12.3. This conjecture is implied by the ‘abc’ conjecture. The
finiteness of the set of integral solutions of the equation ar = bt + cs

is, by contrast, known (it is reduced to Falting’s theorem by a covering
trick, by Darmon-Granville).

Geometric interpretation: The D-integral points are thus noth-
ing else then the orbifold morphisms from Spec(Z) to the arithmetic
orbifold surface (P1, D)(Z). Indeed:

A rational number x = u
v

in lowest terms as before is seen as a section
of the projection of the arithmetic surface P1(Z) sitting over Spec(Z)
with fibre over each prime p equal to the reduction P1(Zp) of P1(Z)
modulo p. The point of the section x lying over p is then the reduction
xp of x modulo p.

The orbifold divisor D(Z) then consists of the 3 disjoint sections
0, 1,∞ over Spec(Z). The order of contact of the section x with the

7This corresponds to the notion of ‘classical’ integral point.
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section 1 say at xp is then equal to the exponent of p in the decom-
position of (x − 1) = u−v

v
, seen as the vanishing order of the function

(x−1) at p. The interpretation is similar for the intersections of x with
the sections 0,∞.

Remark 12.4. When (1
r
+ 1
s
+ 1

t
) ≥ 1, Conjecture 9.1(A) claims that the

integral points of this orbifold should be infinite. This is true even for
the ‘classical’ integral points, by using suitable coverings (by either el-
liptic or rational curves). The only hard case is when (r, s, t) = (2, 3, 5),
where the icosahedral cover of Felix Klein is required.

There is a (complex) function field version of the preceding conjec-
ture, which is known.

13. Specialness vs weak specialness

Recall that a smooth projective X is said to be weakly special if
no finite étale cover X ′ → X admits a rational dominant f ′ : X ′ 99K
Z ′p, p > 0 to some Z ′ of general type.

We saw that specialness implies weak specialness, and both notions
agree in dimension at most 2, after 7.2(8).

•We shall now give examples of weakly special but non special three-
folds, extending a construction initially due to Bogomolov-Tschinkel.

Theorem 13.1. There exists a simply-connected smooth projective three-
fold X together with an equidimensional elliptic fibration F : X → S
on a smooth surface S such that:

1. X is simply-connected.
2. κ(S) ≤ 1 (and any of the three values −∞, 0, 1 can be chosen)
3. κ(S,DF ) = 2 if (S,DF ) is the orbifold base of F (which is neat

and smooth).
Any such F : X → S with these properties is such that X is weakly

special, but not special.

Proof. Let us prove the last claim: (3) implies that X is not special,
and that F is the core map of X. In order to show that X is weakly
special, it is sufficient to see that there is not fibration g : X 99K Z
with Z of general type, and p := dim(Z) > 0. Indeed since g has to
factorise through F , if p = 2, Z = S, if p = 1, Z is simply connected
hence P1. Contradiction since both are not of general type.

The recipe for the construction of X needs two ‘ingredients’:
1. A projective elliptic surface f : T → P1 with one fibre T1 :=

f−1(1) which is simply-connected, and a multiple smooth fibre T0 =
f−1(0) of multiplicity m > 1. One can obtain such a surface from
a logarithmic transform of a projective elliptic surface T ′ → P1 with
simply-connected fibre T ′1 and pg(T

′) = 0.
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2. A surface g : S → P1 with κ(S) ≤ 1 and smooth fibre S0 = g−1(0)
such that π1(S−S0) = {1}. This can be constructed from any simply-
connected surface S ′ with κ(S ′) ≤ 1, by choosing on S ′ a base-point
free ample linear system defined by a smooth ample divisor D′ ⊂ S ′,
and a second generic member D” of this linear system which meets
transversally D′ at d := (D′)2 distinct points, and such that, moreover,
κ(S ′, K ′S + (1− 1

m
).D′) = 2.

For example, S ′ = P2, and D′, D” two generic quartic curves satisfy
these conditions.

One then blows-up all points of D′∩D” to obtain S, and g : S → P1

is the map defined by the pencil generated by D′, D”. One takes for
D = S0 the strict transform of D′ in S. The simple-connectedness of
(S −D) is a consequence of a version of Lefschetz theorem.

We now choose X3 := S ×P1 T , and F : X → S the first projection.
In order to show that the orbifold base (S,DF ) of F : X → S is of

general type, observe that F ∗(D) = m.F−1(D), since D = g−1(0), and
f−1(0) = m.T0. Thus DF ≥ (1− 1

m
).D, and an easy computation shows

that κ(S, (1− 1
m

).D) = κ(S ′, (1− 1
m

).D′) = 2, since KS = b∗(KS′) +E,
while D = b∗(D′) − E, if b : S → S ′ is the blow-up and E its reduced
exceptional divisor. And so: KS + (1− 1

m
).D = b∗(KS′ + (1− 1

m
).D′) +

1
m
.E. �

Remark 13.2. For some examples of the above X it is possible to check
that the hyperbolicity properties are as stated in Conjecture 9.2(H’).
In the arithmetic case, a conjecture of Abramovich-Colliot-Thélène8,
which conflicts with 9.1(A), claims that the above threefolds should be
potentially dense when defined over some number field. The present
state of arithmetic geometry does not permit to solve the conflict.

8It claims that weak specialness, instead of specialness, implies potential density.


