
LECTURES 3-4: YANG BAXTER ALGEBRAS IN THE
CONVOLUTION ALGEBRA

1. Partial flag varieties

Denote by Pm(N) the set of partions of N with m parts. Let λ ∈ Pm(N) be
a partition and Xλ be the appropriate partial flag variety. Its points are given
by flags

Fe = (0 ⊂ F1 ⊂ ... ⊂ Fm−1 ⊂ Fm = CN )

such that dim(Fi + 1/Fi) = λi. There are m natural complex vector bundles
M1,...,Mm over Xλ of the ranks λ1,...,λm respectively.

The action of the torus T on Xλ has a finite set of fixed points (Xλ)T ⊂ Xλ.
To describe them explicitly let {v1, ..., vN} be the standard basis in CN . Let

Fe = (0 ⊂ F1 ⊂ ... ⊂ Fm−1 ⊂ Fm = CN )

be the flag with Fi being the subspace spanned by {v1, ..., vµi}, where

µi =
i∑

j=1

λi.

Then Fe is fixed under the action of T . The symmetric group SN acts on CN
by permuting the elements of the standard basis, so it acts on the set of all
flags. For all σ ∈ SN , Fσ := σ(Fe) belongs to (Xλ)T and in such a way we get
all fixed points. The stabiliser of Fe coincides with the Young subgroup Sλ, so
the mapping σ → Fσ induces a bijection between S/Sλ and (Xλ)T .

Another way to parametrise the fixed points is to identify them with the set
of maps πw : [N ] → [m], where [k] is the set {1, ..., k}. For w ∈ S/Sλ we
denote by the same symbol w the corresponding fixed point.

2. Cohomology

Fixed points for us will be a way to introduce the cohomology of flag varieties,
namely the T equivariant cohomology. Here is ”the definition” of the algebra
of cohomology:

Definition 2.1. HT (.) is a contravariant functor from the category of ”nice”
algebraic varieties with a T action equivariant maps to the category of algebras
over S := C[t1, ..., tn]. H∗(pt) = S.

The above definition implies that for every T fixed point x ∈ X the embed-
ding x→ X induces an S module map HTX → HT (x) = S.
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Example 2.2. Suppose that α ∈ Func(Λ(n,N), H∗T (pt)). Call α a class if
it satisfies the following Goresky-Kottwitz-MacPherson (GKM) conditions: For
each pair w,w′ ∈ Λ(n,N) differing only in places i and j (or equivalently, with
w′ = (i↔ j)w), the difference α(w)− α(w′) should be a multiple of ti − tj .

The tangent space Tw := T (Xλ) at w inherits the T -action; we will be

interested in its Euler class, Ew ∈ H2dλ
T (pt), where dλ is the complex dimension

of Xλ. The explicit formula is as follows. Let πw : [N ] → [m] be the map
corresponding to w. Then

Ew =
∏
i>j

∏
a∈π1(i), b∈π1(j)

(ta − tb)

Let iw denote the inclusion iw : w → Xλ of the fixed point. It is compatible
with the T -action. Define the elements yw ∈ H2dλ(Xλ) as (iw)∗(1). The
explicit formula for them is as follows. For each i ∈ [m] let yij , j ∈ [λi], denote
the Chern roots of Mi the formal symbols such that cj(Mi) = σj(yi1, ..., yiλi),
the jth elementary symmetric function.

Let πw be as above. Then

yw =
∏
i>j

λi∏
a=1

∏
b∈π1(j)

(yia − tb)

Here is the main property of these elements which characterises them:

(iw)∗yw′ = Ewδww′ .

The restriction map i∗w acts as follows: if

π−1w (i) = {k1, ..., kλi}

with k1 < ... < kλi then

(iw)∗(yij) = tkj .

The composition (iw)∗(iw)∗ equals the multiplication by Ew.

3. Subalgebras in the convolution algebra

Here we will be dealing with the partial flag varieties defined by the elements
of P2(N) and P3(N). These are the Grassmanians Gr(n;N) and the three
step flag varieties Gr(n, n+ 1;N).

Introduce the following space

G(N) :=
N∐
n=0

Gr(n,N).
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It carries a natural action of the group Gl(n) and therefore of its maximal torus
T . The diagram

Gr(n, n+ 1;N)

Gr(n;N) Gr(n+ 1;N)

π2
π1

1

defines the standard convolution operators in the H∗T Gr(n,N)

bn(z) = (π2)?((π1)
∗(z), cn(z) = (π1)?((π2)

∗(z)

and therefore of the space H∗T G(N).
Consider the operators on H∗T G(N) defined by the multiplication with the

Chern classes of the tautological vector bundles Tn of rank n over Gr(n;N)
and the quotient vector bundle Qn of rank k over Gr(n;N), 0 ≤ n ≤ N − 1.

Introduce the following generating functions

An(x) =
n∑
i=0

(−1)ici(Qk)xk−i, A′n(x) =
k∑
i=0

ci(Tk)xk−i

Bn(x) = An+1(x)bn, B′n(x) = bnA′n(x)

Cn(x) = cnAn+1(x), C′n(x) = A′n(x)cn

Dn(x) = cnAn+1(x)bn, D′n(x) = bnA′n(x)cn

Consider the following subalgebras of our convolution algebra C:

• Y BN : The subalgebra generated by the coefficients of the polynomials
An(x),Bn(x), Cn(x),Dn(x), 0 ≤ n ≤ N − 1.
• Y B′N : The subalgebra generated by the coefficients of the polynomials
A′n(x),B′n(x), C′n(x),D′n(x), 0 ≤ n ≤ N − 1.

We will work with the algebra Y BN from now. The algebra Y B′ can be
treated similarly.

4. Yang Baxter algebras again

Theorem 4.1. Y BN is Yang Baxter algebras defined above with the R matrices
and the operators L(x, t) from Lectures 1-2.

Proof. We will prove the statement for the algebra Y B by checking all the
relations between the generators listed below

A(x)B(y) = A(y)B(x), C(x)A(y) = C(y)A(x),

B(x)A(y) − B(y)A(x) = (y − x)A(x)B(y)

A(x)C(y) − A(y)C(x) = (x− y)C(y)A(x)

(x− y)C(x)B(y) = A(x)D(y)−A(y)D(x)

B(x)C(y)−B(y)C(x) = (x− y)(D(x)A(y)−A(y)D(x))
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D(x)B(y) = D(y)B(x), C(x)D(y) = C(y)D(x)

B(x)D(y) = (x− y)D(x)B(y) +B(y)D(x)

D(x)C(y) = (y − x)C(y)D(x) +D(y)C(x),

in the fixed point basis of H∗TG(N). This will be a standard fixed point calcula-
tion which goes back to the work of Atyih and Bott. We will use the following
convinient form of their result from [?]. Let M and N be compact oriented
manifolds on which T acts, and f : M → N be a T -equivariant map, then we
have a commutative diagram:

Theorem 4.2. [?]. For a ∈ HT (M),

(f)?a = (i?N )−1 fT? (
(fT )? eN
eM

i?N a) lian

where the push-forward and restriction maps are in localized equivariant coho-
mology and eN and eM are the equivariant Euler class of the normal bundle of
NT and MT .

A fixed point of the T action in Gr(n;N) is represented, as exlained above,
by a splitting of the set [N ] into two subsets, w ⊂ [N ] of cardinality n and its
complement C(w) := [N ] \ w of cardinality k = N − n. We denote such a
fixed point by the symbol w.

A fixed point of the T action in Gr(n, n+ 1;N) is represented by a splitting
of [N ] into three subsets of cardinalities n, 1, N − n − 1. Such a fixed point
maps to w above under π1 if in the splitting the first subset of cardinality n is
exactly w. If the subset of cardinality one is {l}, l ∈ C(w) we will denote such
a point by wl.

A fixed point of the T action in Gr(n + 1;N) to which wl maps is repre-
sented by a splitting of [N ] into two subsets: w ∪ l of cardinality n+ 1 and its
complement in [N ].

We have identified earlier the local Euler classes at such fixed points:

ew∪l =
∏

j∈C(w∪l)

∏
i∈(w∪l)

(tj − ti)

ewl =
∏

j∈C(w∪l)

∏
i∈w∪l

(tl − tb)(tj − ti)(tj − tl)

Therefore the ratio of these Euler classes which goes into the formula in ??
for the operator (p2)∗ is

ew∪l
ewl

=
1∏

j∈w(tl − tj)
Similarly the local denominator for the operator (p1)∗ is

ew
ewl

=
1∏

j∈C(w∪l)(tj − tl)



LECTURES 3-4: YANG BAXTER ALGEBRAS IN THE CONVOLUTION ALGEBRA 5

Recall that the restriction of the Chern class ci(Qn) to the fixed point w is
equal to ith elementary symmetric function σi in k variables calculated at tm,
m ∈ C(w), because tm is the restriction of the Chern root ym of Qn to w
as explained above. Likewise the restriction of the Chern class ci(Tn) to the
fixed point w is equal to ith elementary symmetric function σi in n variables
calculated at tm, m ∈ w, because tm is the restriction of the Chern root ym of
Tn to w.

Now it is a routine exercise to calculate the matrices of the generators of the
algebra Y BN in the fixed point basis.

In this basis the operators A(x) and A′(x) are represented by diagonal ma-
trices with the eigenvalue

A(x)(w) =
∏

j∈C(w)

(x− tj)

A′(w) =
∏
j∈w

(x− tj)

The matrix of the operator B(x) can be calculated as follows: if w ⊂ [N ],
defines a T fixed point in Gr(n;N), then

(π1)
−1w =

∑
l∈C(w)

wl

Therefore combining it with the above calculation of (π2)?wl we obtain that in
the basis of the fixed points the map (π2)?(π1)

? is given by the matrix with the
matrix entry (w,w \ l) equal to

1∏
j∈w(tl − tj)

Putting it together

B(x)(w) = (π2)?(
∑
i

ci(Q)xk−i(π1)
?)(w) =

∑
l∈C(w)

∏
i∈C(w∪l)(x− ti)∏
j∈w(tl − tj)

wl

The matrices of the operators C(x) and D(x) can be obtained easily in the
similar way.

We are ready to prove the statement of the theorem.
We split the relations into the three groups for a reason. The fixed point

calculation for the equations in each group is similar.
In the first group each identity contains the composition of a diagonal matrix

A and either B or C operator. Consider the identities with A and B operators
only. These compositions send a fixed point w to the union of fixed points
of the form w ∪ l), l ∈ C(w). It is easy to see that the denominators of the
corresponding matrix entries on the both sides are equal, so it is enough to
calculate the numerators of a matrix coefficients (w,w ∪ l) in the both sides
and show that they are equal. For the first identity

A(x)B(y) = A(y)B(x)
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we obtain ∏
i∈C(w∪l)

(x− ti)(y − ti) and
∏

i∈C(w∪l)
(y − ti)(x− ti),

hence the identity is proved.
Calculating the numerators of a matrix coefficients (w,w ∪ l) in the both

sides of

B(x)A(y) − B(y)A(x) = (y − x)A(x)B(y)

we obtain:∏
j∈C(w)

∏
i∈C(w∪l)

(y − tj)(x− ti)−
∏

j∈C(w)

∏
i∈C(w∪l)

(x− tj)(y − ti) =

(y − x)
∏

i∈C(w)∪l
(y − ti)(x− ti)

In the second group of relations involve the compositions of B, C and A,
D. Such composition sends a fixed point w to (w,w ∪ l \ d), l ∈ C(w).
The denominares of same matrix coefficients on both sides are equal again,
so we need to compare the numerators only. Consider the matrix coefficient
(w,w ∪ l \ d) in

(x− y)C(x)B(y) = A(x)D(y)−A(y)D(x)

Calculating the numerators of that matrix coefficients we obtain

(x− y)
∏

i∈C(w∪l)
(x− ti)(y − ti) =

∏
j∈C(w∪l\d)

∏
i∈C(w∪l)

(x− tj)(y − ti)−
∏

j∈C(w∪l\d)

∏
i∈C(w∪l)

(y − tj)(x− ti)

The lefthand side of

B(x)C(y)−B(y)C(x) = (x− y)(D(x)A(y)−A(y)D(x))

at the fixed point (w ∪ l, w ∪ d) has the numerator∏
j∈C(w∪d)

∏
i∈C(w∪l)

(x− tj)(y − ti)−
∏

j∈C(w∪d)

∏
i∈C(w∪l)

(y − tj)(x− ti) =

((x− tl)(y − td)− (y − tl)(x− td))
∏

j∈C(w∪l)\d
(x− tj)(y − tj) =

(x− y)(tl − td)
∏

j∈C(w∪l)\d
(x− tj)(y − tj)

The righthand side is equal to∏
j∈C(w∪l\d)

∏
i∈C(w∪l)

(x− tj)(y − ti)−
∏

j∈C(w∪l\d)

∏
i∈C(w∪l)\d

(y − ti)(x− tj) =

(tl − td)
∏

j∈C(w∪l\d)
(x− tj)(y − tj)
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Finally the last group of the relations. Consider the first relation

D(x)B(y) = D(y)B(x)

The operators from this identity add two elements to the set representing the
fixed point and then removes one from the resulting set. Specifically let w be
a fixed point. The operator B adds an element l ∈ C(w) to w. The operator
D adds further an element d ∈ C(w ∪ l) to w ∪ l and removes some p from
w∪{l∪d}. Denote the result w(l, d, p) := w∪{l∪d}\p. Let us calculate the
matrix coefficient (w,w(l, d, p)) of the composition DB. There is two ways to
get from w to w(l, d, p), first add l to w then add d and remove p, or add d
to w and then add l and remove p. Therefore this matrix coefficient will be a
sum of two summands. The denominators of these summands differ by a sign,
because l and d are added to w(l, d, p) in a different order so the sum is in
fact a differences of two fractions with the same demoninators. Calculating the
numerators on the both sides of the first identity∏
j∈C(w∪{l,d})

∏
i∈C(w∪l)

(x− tj)(y − ti)−
∏

j∈C(w∪{d,l})

∏
i∈C(w∪d)

(x− ti)(y − tj) =

(td − tp)
∏

j∈C(w∪{l,d})
(x− tj)(y − tj) =

∏
j∈C(w∪{l,d})

∏
i∈C(w∪l)

(y − tj)(x− ti)−
∏

j∈C(w∪{d,l})

∏
i∈C(w∪d)

(y − ti)(x− tj)

The last two relations to prove are

B(x)D(y) = (x− y)D(x)B(y) +B(y)D(x)

D(x)C(y) = (y − x)C(y)D(x) +D(y)C(x),

Above we have calculated the matrix coefficient (w,w(l, d, p)) of the composi-
tion D(x)B(y). Now we calculate this coefficent for the composition

B(x)D(y)−B(y)D(x)

We need to calculate the numerator only.∏
j∈C(w∪{l,d}\p)

∏
i∈C(w∪l)

(x− tj)(y− ti)−
∏

j∈C(w∪{l,d}\p)

∏
i∈C(w∪l)

(y− tj)(x− ti) =

((x− td)(y − tp)− (y − td)(x− tp))
∏

j∈C(w∪{l,d})
(x− tj)(y − tj) =

(x− y)(td − tp)
∏

j∈C(w∪{l,d})
(x− tj)(y − tj)

The the identities involving the operators C and D can be proved simirlaly.
�
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