
LECTURES 1-2. YANG BAXTER ALGEBRAS.

1. Diagrammatics

In this section we recall the diagrammatics used in the theory of quantum
integrable systems. Although this theory is rather standard in the physics liter-
ature, we feel it is much less known to mathematicians. We therefore develop
it here in quite detail in a way adapted to our situation, but refer also to [?]
and [?].

1.1. Lax matrices and monodromy matrices. In the following we consider
C2 with a fixed basis v0, v1 and denote by Mat2(C[x, t]) the vector space of
2× 2-matrices with entries in the polynomial ring C[x, t] in variables x, t.

We then pick a matrix L(x, t) ∈ Mat2(Mat2(C[x, t])), usually called Lax
matrix, that is

L(x, t) =

Ç
A(x, t) B(x, t)
C(x, t) D(x, t)

å
(1)

with entries in Mat2(C[x, t]). We then view the operators A(x, t), B(x, t),
C(x, t), D(x, t) as C[x, t]-linear operators acting on C2[x, t] := C2 ⊗ C[x, t] in
the basis v0, v1.

Attached to L(x, t) we have the monodromy matrix

MN (x, t1, t2, . . . , tN ) = L(x, t1)⊗L(x, t2)⊗ · · ·⊗L(x, tN )
where ⊗ denotes the Kronecker product of matrices defined as follows: Given
L1, L2 ∈ Mat2(C[x, t]) then L1⊗L2 is obtained by using the ordinary formulas
for the product of matrices, i.e.

L(x, t1)⊗L(x, t2) =
Å
A(x, t1) B1(x, t1)
C(x, t1) D(x, t1)

ãÅ
A(x, t2) B(x, t2)
C(x, t2) D(x, t2)

ã
=Å

A(x, t1)⊗A(x, t2) +B1(x, t2)⊗B(x, t2) A(x, t1)⊗B(x, t2) +B1(x, t2)⊗D(x, t2)
C(x, t1)⊗A(x, t2) +D(x, t2)⊗ C(x, t2) C(x, t1)⊗B(x, t2) +D(x, t2)⊗D2(x, t2)

ã
Therefore, MN (x, t1, t2, . . . , tN ) is a block 2 × 2-matrix with blocks of size
2N × 2N ,

MN (x, t1, t2, . . . , tN ) =

Ç
AN (x, t1, t2, . . . , tN ) BN (x, t1, t2, . . . , tN )
CN (x, t1, t2, . . . , tN ) DN (x, t1, t2, . . . , tN )

å
.(2)

We will view these blocks as matrices of linear operators acting on

V N := C2[x, t1]⊗C[x] C2[x, t2]⊗C[x] · · · ⊗C[x] C2[x, tN ]

= (C2)⊗n[x, t1, t2, . . . , tN ]

in the standard C[x, t1, t2, . . . , tN ]-basis

vε1 ⊗ vε2 ⊗ · · · ⊗ vεN , where εj ∈ {0, 1}. (3)

1
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ex Example 1.1. Our major examples of Lax matrices are the following

L1(x, t) =

Ü
x− t 0 0 0
0 0 1 0
0 1 1 0
0 0 0 0

ê
and L2(x, t) =

Ü
1 0 0 0
0 x+ t 1 0
0 1 0 0
0 0 0 1

ê
(4)

Now we introduce a diagrammatics for calculating the matrix entries of (2)
and algebraic relations between them. For this we first identify the standard
basis vectors (3) with {0, 1}-words ε1ε2 · · · εN of length N . A crossing is a
diagram of the form

built up from 4 line segments, called edges meeting in a point. The edge on
the right is called first input, the bottom the second input, the edge on the left
the first output and the edge on the top second output. A coloured crossing
is a crossing, where all the four edges are labelled by an element from {0, 1}
which we display by colouring the edges with colour red if it is labelled 0 and
black if it is labelled 1. For example the following represents the same coloured
crossing with inputs red and black and outputs red and black.

1

00

1

The 16 possibilities are displayed in the matrix below.





(5)

Our given Lax matrix L(x, t) assigns to each labelled crossing a weight by
assigning to the cross in position i, j above the (i, j)-entry of the matrix L(x, t).
For instance the weight of the cross labelled only with 0’s equals x−t for L1(x, t)
and equals 1 for L2(x, t) in case of the Lax matrices from Example ??.
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1.2. Calculating matrix entries. It is not hard to check that the matrix entries
for the operators

A(x, t1, t2, . . . , tN ), B(x, t1, t2, . . . , tN ), C(x, t1, t2, . . . , tN ), D(x, t1, t2, . . . , tN )

can be calculated as follows:
Consider a 1-row lattice of length N , that is a diagram obtained by putting

N coloured crossing next to each other, and label each external edge by an
element from {0, 1}. We call the resulting diagram a lattice diagram:

The weight of a lattice diagram is the product of weights of its labelled
crosses. This is a polynomial in C[x, t1, t2, . . . , tN ] of total degree at most N .

The top set of labels defines a {01} word and therefore a vector vt ∈ V N

likewise the bottm set of labels defines vb ∈ V N . Let us assign to each of
the four possible colorings of the two horisontal edges one of our operators as
follows:

A(x, t1, t2, . . . , tN )↔ {0, 1}, B(x, t1, t2, . . . , tN )↔ {1, 0},

C(x, t1, t2, . . . , tN )↔ {0, 1}, D(x, t1, t2, . . . , tN )↔ {1, 1}.

Proposition 1.2. Let O be any of the four operators above and vt, vb ∈ V N .
The coefficient of the expantion of O(vt) in front of vb is equal to the sum of
the weights of the lattice diagrams whose external edges labeling is fixed and
defined by O, vt and vb.

Example 1.3. Let us calculate the coefficient of C3(011) defined by L1(x, t)
at 010. The labeling of the external edges therefore is

The only lattice diagram with non zero weight is

and its weight is equal to x− t1.

1.3. Yang Baxter equation.

Definition 1.4. Two matrices R(x, y) ∈ M2(M2(C[x, y])) and L(x, t) ∈ M2(M2(C[x, t]))
are said to a solution to the Yang Baxter equation if the following holds

R12(x, y)L13(x, t)L23(y, t) = L23(y, t)L13(x, t)R12(x, y)

and in V [x, y] ⊗ V [t] ⊗ V [t]. The superindeces indicate the factors on which
the appropriate operators act.
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Proposition 1.5. If the matrices R(x, y) and L(x, t) give a solution to the Yang
Baxter equation then the following identity holds for any N :

R12(x, y)M1
N (x, t1, ..., tN )M

2
N (y, t1, ..., tN ) =M2

N (y, t1, ..., tN )M
1
N (x, t1, ..., tN )R

12(x, y)

Introduce the following matrices

R1(x, y) =

Ü
1 0 0 0
0 0 1 0
0 1 y − x 0
0 0 0 1

ê
R2(x, y) =

Ü
1 0 0 0
0 x− y 1 0
0 1 0 0
0 0 0 1

ê
(6)

yangbaxter Proposition 1.6. The pairs (R1(x, y), L1(x, t)) and (R2(x, y), L2(x, t)) define
solutions to the Yang Baxter equation.

Using the diagrammatics we introduced above it is easy to write the identities
between the matrix entries of the above block 4× 4 matrices with blocks of the
size 2× 2. Consider two types of diagrams pictured below.

1

2

3

3 1

2

By a labeled diagram as before we mean a diagram with {0, 1} labels attached
to all the edges and the weight of such a diagram is again defined as the product
of the weights attached to the vertices. The rule for attaching weights is as
follows: the crossing of the lines labeled by 1 and 2 gets weights from the matrix
R[x− y], the crossing defined by the lines labeled by 1 and 3 gets weights from
the matrix L[x] and the crossing defined by the lanes 2 and 3 gets weights from
the matrix L[y]. The numbering of the lines which make a crossing defines the
order of the inputs and outputs and therefore attaches a weight to every vertex
of a labeled diagram uniquely.

Proposition 1.7. Two matrices R(x, y) and L(x, t) whose entries are identified
with labeled crossings as above give a solution to the Yang Baxter equation if
the sums of the weights of of all the labeled diagrams with the fixed labeling of
the external edges calculated for the two diagrams above are equal.

Now the proof of ?? is an easy exercise.

1.4. Yang Baxter algebra. Define now the main object of our studies . Let
as before O(x) to be one of our four operators. Expand it as a polynomial of x

O(x) =
∑
i

Oixi

with coefficients in EndV N [t1, t2, . . . , tN ].
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Definition 1.8. Define an algebra Y BN as the subalgebra of EndV N [t1, t2, . . . , tN ]
generated by the operators

AiN (t1, t2, . . . , tN ), B
i
N (t1, t2, . . . , tN ),

CiN (t1, t2, . . . , tn), D
i
N (t1, t2, . . . , tN )

Proposition 1.9. The identity defines relations in the algebra Y BN

R12(x, y)M1(x, t)M2(y, t) =M2(y, t)M1(x, t)R12(x, y)

Written in terms of the denerators introduced above this amounts to the fol-
lowing

C(x)A(y) = C(y)A(x), A(x)B(y) = A(y)B(x),

D(x)B(y) = D(y)B(x), C(x)D(y) = C(y)D(x),

A(x)A(y) = A(y)A(x), B(x)B(y) = B(y)B(x),

D(x)D(y) = D(y)D(x), C(x)C(y) = C(y)C(x),

and

A(x)C(y) = (x− y)C(y)A(x) +A(y)C(x)

B(x)A(y) = (y − x)A(x)B(y) +B(y)A(x)

B(x)D(y) = (x− y)D(x)B(y) +B(y)D(x)

D(x)C(y) = (y − x)C(y)D(x) +D(y)C(x)

(x− y)C(x)B(y) = A(x)D(y)−A(y)D(x)

B(x)C(y)−B(y)C(x) = (x− y)(D(x)A(y)−A(y)D(x))

Remark 1.10. There are sixteen relations following from the Yang Baxter equa-
tion, the ones listed above imply the rest.

Note that the space V N has a natural decomposition into the sum of its
subspaces: V N =

∑N
i=0 V

N
n , where V N

n has a basis generated by the vectors
(3)

vε1 ⊗ vε2 ⊗ · · · ⊗ vεN
such that

∑
i εi = n.

The representation of the algebra Y BN has the following property.

Proposition 1.11. For every i and j

AiN : V N
j → V N

j , Di
N : V N

j → V N
j , CiN : V N

j+1 → V N
j , Bi

N : V N
j → V N

j+1

Proof. For N = 1 the matrix M1(x, t1) is is just the Lax matrix L(x, t), hence
the generators of the algebra Y B1 are the operators given by the coefficients of
the expansion in x of the 2× 2 blocks of L(x, t):Ç

t 0
0 0

åÇ
0 0
0 1

åÇ
0 0
1 0

åÇ
0 1
0 0

åÇ
1 0
0 0

å
(7)

which obviously have the above property. The definition of MN (x, t1, ..., tN )
as the Kronecker product implies immediately that this property holds for any
N . �
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